Uncountably Many Inequivalent Lipschitz Homogeneous Cantor Sets in Ir

نویسندگان

  • Dennis Garity
  • Dušan Repovš
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Badly Approximable Numbers and Vectors in Cantor-like Sets

We show that a large class of Cantor-like sets of Rd, d ≥ 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d ≥ 2. An analogous result is also proved for subsets of Rd arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable...

متن کامل

Distinguishing Bing-whitehead Cantor Sets

Bing-Whitehead Cantor sets were introduced by DeGryse and Osborne in dimension three and greater to produce examples of Cantor sets that were non standard (wild), but still had simply connected complement. In contrast to an earlier example of Kirkor, the construction techniques could be generalized to dimensions bigger than three. These Cantor sets in S are constructed by using Bing or Whitehea...

متن کامل

Lipschitz Equivalence of Cantor Sets and Algebraic Properties of Contraction Ratios

In this paper we investigate the Lipschitz equivalence of dust-like self-similar sets in Rd. One of the fundamental results by Falconer and Marsh [On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223– 233] establishes conditions for Lipschitz equivalence based on the algebraic properties of the contraction ratios of the self-similar sets. In this paper we extend the study by...

متن کامل

Sets, Infinity, and Mappings

These notes discuss sets, mappings between sets, and the notion of countably infinite. This material supplements the lecture on countably and uncountably infinite sets in the EE 503 probability class. The material is useful because probability theory is defined over abstract sets, probabilities are defined as measures on subsets, and random variables are defined by mappings from an abstract set...

متن کامل

A chain rule formula in BV and application to lower semicontinuity

Dv = B′(ũ)∇uLN +B′(ũ)Dcu+ (B(u)−B(u))νuH Ju , where ∇u is the absolutely continuous part of Du, Du is the Cantor part of Du and Ju is the jump set of u (for the definition of these and other relevant quantities, see Sect.2). A delicate issue about this formula concerns the meaning of the first two terms on the right hand side. In fact, in order to understand why they are well defined, one has t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009